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A Statistical Viewpoint on the Theory of Evidence

Robert Hummel
Michael Landy

Abstract
-We- escribeSa viewpoint on the Dempster/Shafer "Theory of Evidence",

4 and provide an interpretation which regards the combination formulas as
statistics of the opinions of 'experts'. This is done by introducing spaces 5

with binary operations that are simpler to interpret or simpler to implement
than the standard combination formula, and showing that these spaces can
be mapped homomorphically onto the Dempster/Shafer theory of evidence
space. The experts in the space of0"opinions of experts'combine informa-
tion in a Bayesian fashion. We-pfesent alternative spaces for the combina-
tion of evidence suggested by this viewpoint.

1. Introduction 5

Many problems in artificial intelligence call for assessments of degrees of belief
in propositions based on evidence gathered from disparate sources. It is often
claimed that probabilistic analysis of propositions is at variance with intuitive
notions of belief [1,2,3]. Various methods have been introduced to reconcile the
discrepancies, but no single technique has settled the issue on both theoretical and
pragmatic grounds.

One method for attempting to modify probabilistic analysis of propositions is
the Dempster/Shafer "Theory of Evidence." This theory is derived from notions of
upper and lower probabilities, as developed by Dempster in [4]. The idea that
intervals instead of probability values can be used to model degrees of belief had
been suggested and investigated by earlier researchers [5,6,2,7], but Dempster's
work defines the upper and lower points of the intervals in terms of statistics on
set-valued functions defined over a measure space. The result is a collection of
intervals defined for subsets of a fixed labeling set, and a combination formula for
combining collections of intervals.

Dempster explained in greater detail how these notions could be used to assess
beliefs on propositions in [8]. The topic was taken up by Shafer [9, 10], and led to
publication of a monograph on the "Theory of Evidence," [11]. All of these works e
after [8] emphasize the values assigned to subsets of propositions (the "beliefs"),
and the combination formulas, and de-emphasize the connection to the statistical
foundations based on the set-valued functions on a measure space. This paper will
relate the statistical foundations of the Dempster/Shafer theory of evidence to
notions of beliefs on propositions.

The Dempster/Shafer theory of evidence has sparked considerable debate
among statisticians and "knowledge engineers". The theory has been criticized and ~
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A Statistical Viewpoint on the Theory of Kyldence

debated in terms of its behavior and applicability, e.g. [12,13,89 (Commentaries fol-
lowing)]. Some of the questions have been answered by Shafer [14,15], but discus-
sion of the theoretical underpinnings continues, e.g. [1, 16,3].

Recently, there has been increased interest in the use of the Dempster/Shafer
theory of evidence in expert systems [17, 18]. Most of the recent attempts to map
the theory to real applications and practical methods, such as described in
[19,20,21, 22,23], are based on the techniques described by Shafer [11], and disre-
gard the statistical theoretical foundations from which the theory was derived. In
this paper we present a viewpoint on the Dempster/Shafer theory of evidence that
regards the theory as statistics of opinions of "experts". We relate the evidence-
combination formulas to statistics of experts who perform Bayesian updating in
pairs. Finally, we suggest a related formulation that leads to simpler formulas and
fewer variables.

Recently, the authors have pointed out that the Dempster/Shafer theory of evi-
dence is one technique in a large class of iterative knowledge aggregation methods
[24). These methods, which include relaxation labeling [25], stochastic relaxa-
tion [26] and neural models [27), always attempt to find a true labeling by updating
a state as evidence is accumulated. In the theory of evidence, as in many other
models, the true labeling is one of a finite number of possibilities, but the state is a
collection of numbers describing an element in a continuous domain. In the Shafer

r~l formulation, the state of the system is described by a distribution over the set of all
subsets of the possible labels. That is, each subset A of labels has assigned to it a
number representing a probability that the subset of possible labels which are still
possible based on the evidence is precisely A (see, e.g., (28]). Implicit in this model
is the notion that an incremental piece of evidence carries a certain amount of
weight or confidence, and distinguishes a subset of possibilities. Evidence may
point to a single inference among the set of labels, or may point to a subset of the
alternatives. Further, the Dempster/Shafer theory insists that no mass is placed on
the empty set, reflecting the assumption that the label set is exhaustive, so that at
least one label must be correct.

As evidence is gained, masses are updated according to a combination formula.
The effect of an incremental bit of information pointing to a particular subset A is to
transfer partial mass from sets to subsets defined by intersection with A. However,
mass moved from subsets that are disjoint from A to the empty set is redistributed
evenly among all other subsets. Thus, new evidence typically concentrates mass in
low-order subsets, moving mass into subsets, except that mass directed to the empty
set is recirculated to all nonempty subsets. The combination formula is commuta-
tive and associative, so a succession of incremental changes can be combined into a
single state that can be regarded as a non-primitive updating element.

Shafer defines the belief on a subset of possibilities A to be the sum of the
masses which are applied to subsets of A. This quantity represents a belief in the
statement "The truth lies in A", and corresponds to the "lower probability" in
Dempster's formulation. The highest degree of support that the evidence provides
for a subset A is the amount of mass that can move to a subset of A, and thus is a
sum of masses on subsets that meet A. These values, called "plausibilities", are the
"upper probabilities" defined by Dempster. Finally, Shafer defines the "commonal-
ity numbers" of a subset A as the sum of masses on subsets which contain A.
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Hummel and Landy

Commonality numbers represent the total amount of mass that is available to move
to the entire subset A. Shafer shows that the mass function, belief function, plausi-
bility numbers, and commonality numbers are all equivalent formulations of a body
of evidence, and that each can be derived from any other [11).

The Dempster/Shafer theory of evidence differs from Bayesian analysis in
several important respects. First, beliefs are applied not only to the singleton
labels, but also to sets of labels by a non-additive set function. This increase in the
dimensionality of the space of states permits distinctions in the different types of
evidence that can be represented. For example, lack of evidence can be represented
in the theory of evidence by withholding mass to the entire set of possibilities,
whereas conflicting eividence is denoted by placing large mass on disjoint subsets.
Second, incremental evidence can take a fairly complex form, indicating a subset of
possibilities without expressing preferences within the subset. Finally, the combina-
tion operation is considerably more complex than termwise multiplication of proba-
bilities, unless all mass is concentrated in singleton subsets. In this way, the combi-
nation formula seems to extend Bayesian updating.

Recently, Kyburg [3] has shown how to view the Dempster/Shafer theory of
evidence in terms of a collection of probabilistic opinions over the label set. His
viewpoint is similar to the one here, in that a state is represented by a set of opin-
ions. However, whereas we view the beliefs as statistics, Kyburg interprets these
numbers as extrema over the collection of experts. Accordingly, although he con-
trasts the combination formula to Bayesian updating on the set of probabilistic opin-
ions, the two viewpoints are different.

In general, the viewpoint that masses and other numbers are assigned to sub-
sets of labels obscures the statistical basis on which the upper and lower probability
analysis is based. In Dempster's earlier work [4], however, the set-valued functions
are defined over measure spaces, which can each be viewed as a probability space
yielding subsets of labels for each sample. In this paper, we return to the earlier
Dempster model of measures on a measure space, and relate those notions to spaces
of "experts" with opinions expressed as subsets of possibilities. This portion of our
formulation appears completely and in greater generality in [4], although we hope to
make the connection to pragmatic application issues more explicit.

This paper has three main points. First, we show that the combination rule for
the Dempster/Shafer theory of evidence may be simplified by omniting the normaliza-
tion term. We next point out that the individual pairs of experts involved in the
combination formula can be regarded as performing Bayesian updating. Finally, we
present extensions to the theory, based on allowing experts to express probabilistic
opinions and assuming that the logarithms of experts' opinions over the set of labels
are multinormally distributed.

2. The Rule of Combination and Normalizaton
The set of possible outcomes, or labelings, will be denoted in this paper by A.

This set is the "frame of discernment", and in other works has been denoted, vari-
ously, by fl, 9, or S. For convenience, we will assume that A is a finite set with nt
elements, although the framework could easily be extended to continuous label sets.
More importantly, we will assume that A represents a set of states that are mutually
exclusive and exhaustive. If A is not initially exhaustive, it can easily be made so by

Page 3

% N



A Statistical Viewpoint on the Theory of Evidence

including an additional label denoting "none of the above." If A is not mutually
exclusive, it can be made so by replacement with its power set (i.e., the set of all
subsets), so that each subset represents the occurrence of exactly that subset of
labels, excluding all other labels. Of course, replacing A by its power set is peri-
lous, in that it will greatly expand the cardinality of the label set. For practical
applications, the implementer is more likely to want to replace A by the set of all
plausible subsets describing a valid configuration.

An element (or state of belief) in the theory of evidence is represented by a
probability distribution over the power set of A, P(A). That is, a state m is

m : P(A) -. [0,1],

1 m(A) - 1.
ACA

There is an additional proviso that is typically applied, namely that every state m
satisfies

m(0) - 0.

Section 3.2 introduces a plausible interpretation for the quantities comprising a
state.

A state is updated by combination with new evidence, or information, which is
presented in the form of another state. Thus given a current state m l, and another
state m2, a combination of the two states is defined to yield a state m 1 @ m2 given
byby ,m1(B)m2(C)

(Mn1 (BM 2 )(A) = n- ifl A 0,(la)
1 - , m1 (B)m 2 (C) ifA#0,

BnC-0

and

(Mi (Bm2)(0) = 0.

This is the so called "Dempster Rule of Combination." Note that the resulting
function m is a probability mass due to the normalization factor, and that
(m 1  m 2)(0) = 0 by definition.

The problem with this definition is that the denominator in (la) might be zero,
so that (ml 1 m2)(A) is undefined. That is, there exist pairs ml and m2 such that
the combination of ml and m2 is not defined. This, of course, is not a very satisfac-
tory situation for a binary operation on a space. The solution which is frequently
taken is to avoid combining such elements. An alternative is to add an additional
element m0 to the space:

mo(A) = 0 for A * 0,

mo(O) = 1.

Note that this additional element does not satisfy the condition m(O) = 0. Then
define, as a special case,
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Hummel and Landy

Mil Dm2 = mO if , ml(B)m 2 (C) = 1. (1b)
BnC-0

The binary operation is then defined for all pairs inx, m2. The special element mo
is an absorbent state, in the sense that moEm = mmo = mo for all states m.

This space has an identity element. The identity state, ml, represents complete
ignorance, in that combination with it yields no change, (i.e., mtem m mJ = mt, nt
for all states m). This state places full mass on the subset which is all of A,

mI(A) =1

m1(A) - 0 for A # A.

Definition 1: We define (M,e), the space of belief states, by

M = {m:P(A) -- IR+U{0} I m(A) = 1, m(0) = 0} U {in0},
AC:A

and define q by (la) when the denominator in (la) is nonzero, and by (lb) other-
wise. 5

The set M, together with the combination operation E, constitutes a monoid,
since the binary operation is closed and associative, and there is an identity ele-
ment.1 In fact, the binary operation is commutative, so we can say that the space is
an abelian monoid.

Still, because of the normalization and the special case in the definition of (,
the monoid M is both ugly and cumbersome. It makes better sense to dispense with
the normalization. We have

Definition 2: We define (M ', '), the space of unnormalized belief states, by

MW M {m:P(A)- R + U( 0 }1 m(A) = 1}
ACA

without the additional proviso, and set

(m 1 D' m 2 )(A) = I mi(B)'m 2 (C) VACA (2)

for all pairs ml,m2E M' .N

One can verify that ml1 'm 2EM', and that ED' is associative and commutative.
Further, the same element m, defined above is also in M', and is an identity. Thus
M' is also an abelian monoid. Clearly, M' is a more attractive monoid than M.

We define a transformation V mapping M' to M by the formulas
m(A) (3__(Vm)(A m ( A)- (3)

a,(V.)(0) = 0

if m(0) 1, and
~Vm =f m0

'A structure with a dosed associative binary operation is sometimes call a senigroup, so that the space in
question is an abelian semigroup with an identity.

* Page 5
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otherwise.

A computation shows that V preserves the binary operation; i.e.,

V(m 1 e'm 2 ) = V(ml)eV(m 2).

Thus V is a homomorphism.2 Further, V is onto, since for m E M, the same m is in
M', and Vm = m. The algebraic terminology is that V is an epimorphism of
monoids, a fact which we record in

Lemma 1: V maps homomorphically from (M',E') onto (M.,,). a

A "representation" is a term that refers to a map that is an epimorphism of
structures. Intuitively, such a map is important because it allows us to consider
combination in the space formed by the range of the map as combinations of preim-
age elements. Lemma 1 will eventually form a small part of a representation to be
defined in the next section. In the case in point, however, if it is required to com-
bine elements in M, one can perform the combinations in M', and project to M by
V after all of the combinations are completed. Since combinations in M ' are much
cleaner, this is a potentially useful observation. In terms of the Dempster/Shafer
theory of evidence, this result says that the normalization in the combination for-
mula is essentially irrelevant, and that combining can be handled by Equation (2).
Specifically, given a sequence of states in M to be combined, say M 1 , m2, • ,m
we can regard these states as elements in M'. Since each mi satisfies ml(0) = 0,
they each satisfy Vmi = mi. Thus

V(m 1 'm 2 ' em) =Vmle Vmk --m = m,

which says that it suffices to compute the combinations using D' (Equation (2)), and
then project by V (Equation (3)). Of course, the final projection is necessary only
if we absolutely insist on a result in M. If any more combining is to be done, or if
we are reasonably broad-minded, intermediate results can be interpreted directly as
elements in M'.

3. Spaces of Opinions of Experts

In this section, we introduce two new spaces, based on the opinions of sample
spaces of experts, and discuss the evaluation of statistics of experts opinions.
Finally, we interpret the combination rules in these spaces as being a form of Baye-
sian updating. In the following section we will show that these spaces also map
homomorphically onto the space of belief states.

3.1. Opinions of Experts

We consider a set C of "experts", together with a map gL giving a weight or
strength for each expert. It is convenient to think of F as a large but finite set,
although the essential restriction is that C should be a measure space. Each expert
wEC maintains a list of possible labels: Dempster uses the notation r(w) for this

'Strictly speaking, this merely shows that V is a homomorphism of semigroups; it is not hard to show that
V maps the identity to the identity, which it must since it is onto, and thus it is also a homomorphism of
monoids.

Page 6
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Hummel and Landy

subset; i.e., F(wo)CA. Here we will assume that each expert co has more than just a
subset of possibilities r(t), but also a probabilistic opinion p,. defined on A satisfy-
ing

p(,(X)Z-O, VXEA

p .(k)>0 iff X E(o),

and

( p,.(X) = 1 or p . (k) = OVX), V wE&.
KEA

As suggested by the notation, p,.(k) represents expert to's assessment of the proba-
bility of occurrence of the label X. If an expert w) believes that a label X is possible,
i.e., x E r(o), then the associated probability estimate p .(X) will be nonzero. Con-
versely, if ca thinks that X is impossible (xfr(w)), then p.(X) = 0. We also r
include the possibility that expert o has no opinion which is indicated by the special
element p , - 0. This state is included in order to ensure that the binary operation,
to be defined later, is closed. We denote the collection of maps { p . I W E. } by P.

It will turn out that the central point in the theory of evidence is that the p . (k)
data is used only in terms of test for zero. Specifically, we set

l ifp .(X) > 0
Xw( 1 .) if p .(k) =f 0.(4

Note that x. is the characteristic function of the set 1(w) over A, i.e.,
xw(X) = 1 iff xEFr(w). The collection of all x.'s will be denoted by X, and will be
called the boolean opinions of the experts C.

If we regard the space of experts . as a sample space, then each x.(X) can be
regarded as a sample of a random (boolean) variable x(k). In a similar way, the
p (k)'s are also samples of random variables p (k). The state of the system will be
defined by statistics on the set of random variables {xOL)IXEA. These statistics are
measured over the space of experts. If all experts have the same opinion, then the
state should describe that set of possibilities, and the fact that there is a unanimity of
opinion. If there is a divergence of opinions, the state should record the fact.

To compute statistics, we will simply sum the weights of experts in subsets of
6. If the experts have equal weights, this is equivalent to counting the number of
experts. In general, we will sum the weights of experts in a subset , and denote
the result by IL(.Y). Thus IL is in fact a measure on 6, although it is completely
determined by the weights of the individual experts p({w}j) for wEt. (We are
assuming that . is finite.) That is,

ffi) = (Do4}).

It is important to observe that these measures are evaluated on subsets of
experts, and not on the subsets of A. The m(A) values which show up in Shafer's
work are applied to subsets of the frame of discernment A, but are related to the
measures p defined on subsets of experts, as we will presently show. The measures
P, show up in Dempster's original work on upper and lower probabilities, however,
and are the basis for our presentation that follows. In fact, Dempster treats a more

- - Page 7
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general case where p can be a measure defined on a Borel class of subsets of an
infinite space of experts 6. For our purposes, it suffices to consider measures on
finite sets of experts. It is nearly sufficient to consider nothing more than counting
measures on finite sets of experts (experts equally weighted), although we defer an
explanation of this point until the end of the Section 4.

We are now ready to introduce the spaces which we will term "opinions of
experts." The central point is that the set of labels A is fixed, but that the set of
experts C can be different for diitinct elements in these spaces. For the first space,
we also require a fixed set of positive constants KX, one for each label.

Definition 3: Let K - (Kx} be a set of positive constants indexed over the label set
A. The space of probabilistic opinions of experts (ArK,O), is defined by

A( = (.6,l,P) I #6 < o, I. is a measure on C, P={P,}1.(t ,

p :A - [0,1] V w, andVw, pp(k) = lorp 0}.
X(A

As noted earlier, the requirement that #6 < cc is for clarity of presentation; Demp-
ster defines the space A" in a more general setting.

We define a binary operations on Al as follows. Given (61,1LI,PI) and

(2,P,2,P2) elements in A(, define

( p..P) (6 , P1,IP1) ( (62,. ,P2)

by

-6 = 61 X6 2 = {(il, W2) 11 ()IE I, W2 EC2 },

P..({((1,w2)}) = P1.({W1})-z.2({W2}),

and
=l P = {P(w1,.-)}(-1 ,- 2) EE

p (1) (X)p (2) (k) [K ]_1

proviling the denominator is nonzero, and

P (01,( 2) - 0

otherwise. Here, Pi = {p( E}t for i= 1,2, and the K,'s are a fixed set 7,f positive
constants defined for XEA. E

To interpret this combining operation, consider two sets of experts .I and .62 ,
with each set of experts expressing opinions in the form of P 1 and P 2. We form a
new set of experts, which is simply the set of all committees of two, consisting of
one expert from 61, and another from C2. In each of the committees, the members
confer to determine a consensus opinion. In Section 3.3, we will see how to inter-
pret the formulas as Bayesian combination (where KX is the prior probability on X).
And in the following section we will show that this space maps homomorphically
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onto the belief spaces. Finally, if as in Dempster [4], we only regard the opinions
of these experts in terms of a test for zero (i.e. disregarding the strength of nonzero
opinions), we arrive at yet another space. A depiction of the combination of two
Boolean opinions is shown in Figure 1.

Definition 4: The space of boolean opinions of experts, (A", •), is defined similarly-

A(' = {(., .LX)I #e< o, ., is a measure on $,

X={X,.}.Et , x,. :A - {0,1} V w}.

If (El, p.1, X 1) and (62, j1, 2 , X2) are elements in N/', define their product

(V, pX)= (e1, 1 &I,X 1) ?(:)V2 , MX 2 )

by

-" = E1 X '2 = {(W 1 ,°W2 ) 1 w 1 E, 1 , w 2 E E2}

and-I .({(W1,w2)}) .(L1({W{DM({W2}),
~and

X =

X(W1,W 2)(X) = W - 2 ,

where Xi - {x twiE C}, for i = 1,2. *

.161

A

-62-

(W1 ,t2)

Figure 1. A depiction of the combination of two boolean opinions of two experts, as is
present in combinations in A( , yielding a consensus opinion by the element in the product set
of experts formed by the committee of two.

04 Page 9
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A Statistical Viewpoint on the Theory of Evidence

3.2. Statistics of Experts
For a given subset A CA, the characteristic function XA is defined by

II

XA() =(KVI.,. if X ( A."

Equality of two functions defined on A means, of course, that the two functions
agree for all KEA. That is, x. = XA means

= K XA(X) V XE A,

which is the same thing as saying r(w) = A.

Given a space of experts £ and the boolean opinions X, we define

p.{waEC I x.= XA}
rn(A) = (5)

for every subset A CA. It is possible to view the values as probabilities on the ran-
dom variables {x(X)}. We endow the elements of . with the prior probabilities

{o })/j.(&), and say that the probability of an event involving a combination of the
random variables x(k)'s over the sample space . is the probability that the event is
true for a particular sample, where the sample is chosen at random from . with the
sampling distribution given by the prior probabilities. This is equivalent to saying

Prob(Event)= I({wEt I Event is true for w})

With this convention, we see that
'r(A) = Prob(x(k) = XA(X) for all X).

In fact, all of the priors and joint statistics of the x(k)'s are determined by the full
collection of re(A) values. For example,

Prob(x(ko) = I ) = r(A)
(A X 0 EA I

and

Prob(x(o) = I and x(X 1)= 1)= r(A)."
{A IXO,)XiEAJ

-5Further, the full set of values r(A) for ACA defines an element m.'. To
-.- ,

see this, it suffices to check that m(A) = 1, which amounts to observing that for
every w, x = XA for some ACA

Recalling the definition of V (Equation (3)), we may also consider the numbers

(Vm)(A). These values can also be interpreted as probabilities, providing we define
probability in a way which ignores experts who give no possibilities, and providing
there are some experts who give some possibilities, (i.e., m(O) * 1). Then for

A *0,

em(A) = (VfN)(A) = f(A) j
M-r(0)

is the probability that a randomly chosen expert w will state that the subset of

Page 10
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Hummel and Landy

possibilities is precisely A conditioned on the requirement that the expert gives at
least one possibility.

Under the assumptions that A 0 0, 1in(0) * 1, and that probability is meas-
ured over the set of experts expressing an opinion e'={wJx,.- 0}, many of the
quantities in the theory of evidence can be interpreted in terms of familiar statistics
on the x(k)'s. For example, the belief on a set A,

Bel(A) - m(B)
B QA

is simply the joint probability

Bel(A) = Prob(x(k) = 0 for XEA).£'

Note that the prior probabilities on the experts in ' are given by t({a})/,(,').
The denominator in these priors is nonzero due to the assumption that r(0) 1.

In a similar way, plausibility values

P1(A) = I m(B) = 1-Bel(,4)

can be interpreted as disjunctive probabilities

P1(A) = Prob(x(k) = 1 for some XEA).

The beliefs and plausibilities are the lower and upper probabilities as defined by
Dempster. The commonality values

Q(A) m (B)
AQB

are joint probabilities:

Q(A) = Prob(x(k) = 1 for XEA).
"I

To recapitulate, we have defined a mapping from P values to X values, and
then transformations from X to A and m values. The resulting element m, which
contains statistics on the X variables, is an element in the space of belief states M of
the of the Dempster/Shafer theory of evidence (Section 2).

3.3. Bayesian Interpretation
We now interpret the manner in which pairs of experts achieve a consensus

opinion. We will show that the combination formulas given for A( and AP are con-
sistent with a Bayesian interpretation. Our treatment is standard.

We first consider the combination of (C1,1L,P1) and (162,P2,P2) in .M. We I
assume that the experts in 6j have available to them information sj. Note that all
experts in a given set of experts share the same information. The information s"
consists of boolean predicates constituting evidence about the labeling situation. For
example, in a medical diagnosis application, sj might consist of a statements about
the presence or absence of a set of symptoms. Each set of experts ej deals with a
different set of symptoms.

Page 11



A Statistical Viewpoint on the Theory of Evidence

In general, the information rj is the result of a set of tests having boolean out-comes. We could write sj - fj(ar), where fj represents the tests, and a is the
current situation which is an element in some sample space of labeling problems
ca(Y.. Assuming I is also a measure space, there are prior probabilities on the

information coefficients:
Prob(sj) - Prob(j(c) - sj). .

There are also prior probabilitis on the true label )(ar) for labeling situation a,
given by

Prob(X) -Prob~(a')-X)

Note that these probabilities are not measured over the space of experts C, but
instead are measured over the collection of instances I of the labeling problem.
For example, in a medical diagnosis domain, I might represent the set of all
patients.

For 1, ,2, we will suppose that pU, k represents expert tai's estimate of

Prob(L I sj),
the probability (over 7.) that X(c') - X conditioned on fj(c') -sj. The "expert"
(W1 ,W2) should then estimate Prob(XMs,4), which is the probability that ?X(a) -X
given that fi(a) - s, and f2(c') - S2- thus combining the two bodies of evidence
seen by the two experts in that committee. This committee proceeds as follows:

Bayes' formula implies that
Prob().Prob(s1,S2 1X) Prob(M)Prob(si I)4)Prob(S2 ISi,X)

ProG~sis 2  = Prob(s,,S2 ) =Prob(s 1,42)

Applying Bayes' formula to Prob(s1 I X), this becomes

Prob(s iS)

At this point that we assume that

Prob(S2 1IiX = Prob(S2 IX). (7)
Using this assumption, we obtain by combining (6) and (7), and applying Bayes'
formula to Prob(S2 IM,

Pro(Xst~ 2 ) c~s~sivProb(k I s 1)Prob(k S 2)(8
Prob(X)

where C(S1 ,S2 ) is a constant independent of X. Using Equation (8), expert (wO1.W2)
estimates that

C(S,S 2 )Pi2 ,(9)

based on the independence assumption (7), where Kc), = Prob(X). Since the left hand
side of this equation should sum to I over X, we have that
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c(sl,s2) = ,'_,o (10

unless, of course, this denominator is zero, in which case we resort to setting
p(ow2)--. Combining (9) and (10) gives the combination formula given in Defini-

tion 3. Thus, we have shown that combination in A" is a form of Bayesian updating
of pairs of experts, based on an independence assumption.

To interpret the combination formula of A(' in a Bayesian fashion, a weaker
independence assumption suffices. The combination formula can be restated as:

X( 1, 2)(X) = 0 iff x~l)(X) = 0 or xN()

Using Bayes' formula, and assuming that all prior probabilities are nonzero, it suf-
fices to show that

Prob(s1,s21X) = 0 iff Prob(s 1 jX) = 0 or Prob(s 2 1X) = 0.

The "if" part follows since

Prob(sl,S21 k ) = Prob(siI)'Prob(s 2IS1,X)

= Prob(s 2 Ik)'Prob(j1s 2 ,X).
The "only if" part becomes our independence assumption, and is equivalent to

Prob(siIX) > 0 and Prob(s21k)>O =! Prob(s1,s 2 1X)>O. (11)

This assumption is implied by our earlier hypothesis (7). However, assumption (11)
is more defensible, and is actually all that is needed to regard updating in the space
of "boolean opinions of experts," K', as Bayesian. Since the Dempster/Shafer
theory deals only with the boolean opinions, Equation (11) is the required indepen-
dence assumption.

4. Equivalence with the Dempster/Shafer Rule of Combination
At this point, we have four spaces with binary operations, namely (K,®),

(A/',®), (M',E'), and (M,@). We will now show that these four spaces are
closely related. It is not hard to show that the binary operation is, in all four cases,
commutative and associative, and that each space has an identity element, so that
these spaces are abelian monoids. We also have

Definition 5: The map T
T : A(-- A(''

with (C,L.,X) = T(6,,.,P), is given by equation (4), i.e., x. (X) I 1 iff p()>O,
and x,(X) = 0 otherwise. 0

There is another mapping U, given by

Definition 6:
U:N- K '

with m = U(., ,,X) given by equation (5), i.e.,
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A() PO(DaE-6ko1 = XA}IP.({6). 0
We will show that T and U preserve the binary operations. More formally, we
show that T and U are homomorphisms of monoids.

Lemma 2: T is a homomorphism from N onto AP.
Proof: It is a simple matter to verify that

T(C1 ,P 1 ) E) T(C2 ,P2) - T((.6,P 1 ) 0 (62 ,P2 )).-

The essential point, it turns out, is that since the probabilistic opinions are all non-
negative,

p()()) .P ()() > 0 iffpS()0adpG>O

T is easily seen to be onto. 0

Lemma 3: U is a homomorphism of A(' onto M.

Proof: Consider V, r.5X) V (& ,1.iXl) G (4 2 ,.i.2 ,X 2). For each w E El and (02E 12,
the corresponding xand X(21 are characteristic functions of subsets of A, say Xy
and XC respectively. It is clear that

*1 612X iff Blc = A.

Thus

X(wI,- 2) = XA1 iff x~l = XB and X() = XC where Blc = A.

so

{(Ca1,c02)Ee I X(o- 1,- 2) = XA} U {(011411 = XB}X{'o2 IXW X}
Bnc-A

Since this is a disjoint union, using properties of measures, this gives

IL{Wl(*))E IX(. 1 ,., 2 ) =XA} = X Oi1{ECI I X(WJ)XB1i.2{2E-2 1 xW2 c}

We can divide both sides of this equation by p{&} = V1 &M&IC2} to obtainI

Bnfc -A

where?;~ = U(&, 1j,X), and Aiz = U(C 1,,L,Xi), i=1,2. Thus

U((e1,1JL1,X1l!)(2,42,X2)) = U(C1,M.,X1) )U(2 'I?)
which is to say that U is a homomorphism.

Finally, we show that U is onto. Recall that there are n elements in A, and so
there are 2' different subsets of A. For a given mass distribution A~ E M', consider
a set of 2" experts .6, with each expert caE E giving a distinct subset r(w) CA as the
set of possibilities. If we give expert w the weight pL{w} = ,A(1(w)), and set

XO= Xr(.), then it is easy to see that rn = U(E,P.,X). U

In the immediately preceding proof that U is onto, we assigned weights to
experts. This is the only place were we absolutely require the existence of differen-
tial weights on experts. However, if we content ourselves to spaces M' and M
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containing only rational values for the mass distribution functions (as, for example,
is the case in any computer implementation), then the weights can be eliminated,
and replaced by counting measure. For in this case, given a rational mass distribu-
tion m, we multiply by a common multiple of the denominators of the fractions
appearing in the 2" values of the mass distribution to obtain 2" integer values in
proportion to the given A(A) values. We then construct an element in A' by repli-
cating each expert the appropriate number of times, given by the integer value
corresponding to the subset A CA designated by the expert as the subset of possibili-
ties.

Recall from Section 2 that the map V:M'--M is also a homomorphism. So we
can compose the homomorphisms T:A--A/' with U:A'-.M' with V:M '-M to obtain
the following obvious theorem.

Theorem: The map VoUoT:A-M is a homomorphism of monoids mapping onto the
space of belief states (M ,$). 0

This theorem provides the justification for the viewpoint that the theory of evidence
space M represents the space X via the representation VoUoT. The proof follows
from the lemmas; since each of the component maps in this representation is an onto
homomorphism, the composition also maps homomorphically onto the entire theory
of evidence space.

The significance of this result is that we can regard combinations of elements in
the theory of eviden-.e as combinations of elements in the space of opinions of
experts. For if ml, - • ,mk are elements in M which are to be combined under (,
we can find respective preimages in A under the map VaUoT, and then combine
those elements using the operation ® in the space of opinions of experts A(. After
all combinations in A( are completed, we project back to M by VoUoT; the result
will be the same as if we had combined the elements in M. The only advantage to
this procedure is that combinations in A are conceptually simpler: there are no
funny normalizations, and we can regard the combination as Bayesian updatings on
the product space of experts.

5. An Alternative Method for Combining Evidence
With the viewpoint that the theory of evidence is really simply statistics of

opinions of experts, we can make certain remarks on the limitations of the theory.

(1) There is no use of probabilities or degrees of confidence. Although the belief
values seem to give weighted results, at the base of the theory experts only say
whether a condition is possible or not. In particular, the theory makes no dis-
tinction between an expert's opinion that a label is likely or that it is remotely
possible.

(2) Pairs of experts combine opinions in a Bayesian fashion with independence
assumptions of the sources of evidence. In particular, dependencies in the
sources of information are not taken into account.

(3) Combinations take place over the product space of experts. It might be more
reasonable to have a single set of experts modifying their opinions as new
information comes in, instead of forming the set of all committees of mixed
pairs.
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Both the second and third limitations come about due to the desire to have a
combination formula which factors through to the statistics of the experts and is
application-independent. The need for the second limitation, the independence
assumption on the sources of evidence, is well-known (see, e.g., [14]). Without
incorporating much more complicated models of judgements under multiple sources
of knowledge, we can hardly expect anything better.

The first objection, however, suggests an alternate formulation which makes
use of the probabilistic assessments of the experts. Basically, the idea is to keep
track of the density distributions of the opinions in probability space. Of course,
complete representation of the distribution would amount to recording the full set of
opinions p , for all w. Instead, it is more reasonable to approximate the distribution
by some parameterization, and update the distribution parameters by combination
formulas.

We present a formulation based on normal distributions of logarithms of updat-
ing coefficients. Other formulations are possible. In marked contrast to the
Dempster/Shafer formulation, we assume that all opinions of all experts are nonzero
for every label. That is, instead of converting opinions into boolean statements by
test for zero, we will assume that all the values are nonzero, and model the distribu-

'-" tion of their strengths.
A simple rewrite of Equation (8) of Section 3.3 yields

tionof hei stenghs.Prob(Mls) ProbO~ 1S2)
Prob(kIs1,s2) = c(s1,s2)'Prob(k)"Prob(?t) Prob(s)Prob(k) Prob(k)

This equation depends on an independence assumption, Equation (7). We can
* iterate this equation to obtain a formula for Prob(klsi, . ,sk). In this iteration

process, s, and S2 successively take the place of s 1 A ... Asj and SL+1 respectively,
as i increases from 1 to k -1. Accordingly, we require a sequence of independence
assumptions, which will take the form

Prob(si+l1IsA . . Asi,k) = c(sl, ,S+1)'Prob(sik)

for i = 1, ,k- 1. Under these assumptions, we obtain
k Prob(k si)

Prob(kis1, • • • ,s) = C(SI, ,st)Prob(X)'il'rfbi]
SProb(X)

In a manner similar to [29], set

Prob(k Isi)
L(k Isi) = log Prob(k)

(Note, incidentally, that these values are not the so-called "log-likelihood ratios"; in
particular, the L(k Isi)'s can be both positive and negative). We then obtain

k
log[Prob(kXs , • ,s)] = c + log[Prob(k)] + XL(Kis),

i-i

where c is a constant independent of k (but not of sI, • sk).

The consequence of this formula is that if the independence assumptions hold,
and if Prob(k) and L(X si) are known for all X and i, then the approximate values
Prob(k Is,, •Sk) can be calculated from
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k
Prob(X) exp[ J L(X Isi ) ]

Prob(klsl, ,sk) = .(12)-~~7Prob(X')exp[7, L(V,' si)] -

Accordingly, we introduce a space which we term "logarithmic opinions of .5

experts." For convenience, we will assume that experts have equal weights. An
element in this space will consist of a set of experts .i, and a collection of opinions
y. _= (.y(') Each y(,) is a map, and the component y )(K) represents expert W's
estimate of L(k Isi):

y,) : A - IR, y() = L(Xlsi).

Note that the experts in 6i all have knowledge of the information si, and that the
estimated logarithmic coefficients L(Xlsi) can be positive or negative. In fact, since
the experts do not necessarily have precise knowledge of the value of Prob(,), but
instead provide estimates of log's of ratios, the estimates can lie in an unbounded r-
range.

In analogy with our map to a statistical space (Section 3.2), we can define a
'. space which might be termed the "parameterized statistics of logarithmic opinions of
--", experts." Elements in this space will consist of pairs (i;,C), where U is in JR" and C

is a symmetric n by n matrix. We next describe how to project from the space of
logarithmic opinions to the space of parameterized statistics.

Let us suppose that for a set of experts 6, and for A-{Xl, . X. ,,,}, the n-
vectors composed of the logarithmic opinions Y.ER", . (y.(L), y.(X.)),
are approximately (multi-) normally distributed. Thus we model the distribution of
the random vector = (y(kl). • • • ,y(L)) by the density function

re (-) x 2 ~/2dV. ep(-ur-(-), E. ,
"

(2w) = d eER M

where jiER' is the mean of the distribution, and C is the n by n covariance matrix.
That is, in terms of the expectation operator E(} on random variables over the sam- -'

pie space C,

S= (u. .U).

and for C = (cq), .

c= E((y(ki) - u)(y(X/) -uj)}. I

These measurements of the statistics of the y(k)'s can be made regardless of the
true distributions. The accuracy of the model depends on the degree to which the
multinormal distribution assumption is valid.

Next we discuss combination formulas in both spaces. Suppose (Ci,Y 1),
i - 1,2, are two elements in the space of logarithmic opinions, each describing a
sample space of experts together with opinions. Since according to Equation (12).
the logarithmic opinions add, we define the combination of the two elements by
(, Y), where
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X -62Y ' (Y(-1,-2)}(-1,.W2W1

y(-1i.2)(X) - + 02

To consider combinations in the space (8f statistics, let mi(7) be the density
function over R' for the random vector " over the sample space 4i, i = 1,2.
Aume that each mi is a multinormal distribution, associated with a mean vector
U and a covariance C (O. In order that the projection to the space of statistics be a

A homomorphism, the definition of combination in the space of statistics should
respect the true statistics of the combined opinions. The density function m(7) for
the combination Y(, 2), (CO1 ,w 2)E£, is given by

MG f M('M(-'a'
IR*

Notice that this is the point where we use the fact that the logarithmic opinions add
under combination.

Projecting to the space of statistics, we discover the advantage of modeling the
distributions by normal functions. Namely, since the convolution of a Gaussian by a
Gaussian is once again a Gaussian, we define the combination formula

(1), CM) e o (2),C (2)) = (u; (1) ) ,C +C(2)).

That is, since m, and m2 are multinormal distributions, their convolution is also
multinormal with mean and covariance which are the sums of the contributing
means and covariances. (This result is easily proven using Fourier transforms.) An
extension to the case where £1 and £2 have nonequal total weights is straight-
forward.

Having defined combination in the space of statistics, one must show that the
transformation from the space of opinions to the space of statistics is a homomor-
phism, even when the logarithmic opinions are not truly normally-distributed. This
is easily done, since the means and covariances of the sum of two random vectors
are the sums of the means and covariances of the two random vectors.

To interpret a state (i;,C) in the space of parameterized statistics, we must
remember the origin of the logarithmic-opinion values. Specifically, after k updat-
ing iterations combining information s, through sk, the updated vector

(yi. I IR is an estimate of the sum of the logarithmic coefficients,

Yj 2XL(Xlsj).

According to Equation (12), the a posteriori probabilities can then be calculated
from this estimate (providing the priors Prob(k)'s are known). In particular, the a
posteriori probability of a label Xj is high if the corresponding coefficient
Y, + log[Prob(ky) ] is large in comparison to the other components yy + log[Prob(Xj) ].

Since the state (ii,C) represents a multinormal distribution in the log-updating
space, we can transform this distribution to a density function for a posteriori pro-
babilities. Basically, a label will have a high probability if u1 +log[Prob(k,)] is
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relatively large. However, the components of U represent the center of the distribu-
tion (before bias by the priors). The spread of the distribution is given by the
covariance matrix, which can be thought of as defining an ellipsoid in IR" centered
at i7. The exact equation of the ellipse can be written implicitly as:

( -rc- - )= 1.

This ellipse describes a "one sigma" variation in the distribution, representing a
region of uncertainty of the logarithmic opinions; the distribution to two standard
deviations lies in a similar but enlarged ellipse. The eigenvalues of C give the
squared lengths of the semi-major axes of the ellipse, and are accordingly propor-
tional to degrees of confidence. The eigenvectors give the directions in which the
eigenvalues measure their uncertainty. Bias by the prior probabilities simply adds a
fixed vector, with components log[Prob(Xj)], to the ellipse, thereby translating the
distribution. We seek an axis j such that the components yj of the vectors y lying in
the translated ellipse are relatively much larger than other components of vectors in
the ellipse. In this case, the preponderant evidence is for label Xj.

Clearly, the combination formula is extremely simple. Its greatest advantage
over the Dempster/Shafer theory of evidence is that only O(n 2 ) values are required
to describe a state, as opposed to the 2" values used for a mass distribution in M.
The simplicity and rcduction in numbers of parameters has been purchased at the
expense of an assumption about the kinds of distributions that can be expected.
However, the same assumption allows us to track probabilistic opinions (or actually,
the logarithms), instead of converting all opinions into boolean statements about
possibilities.

6. Conclusions
We have shown how the theory of evidence may be viewed as a representation

of a space of opinions of experts, where opinions are combined in a Bayesian
fashion over the product space of experts. (Refer to Figure 2.) By "representa-
tion", we mean something very specific - namely, that there is a homomorphism
mapping from the space of opinions of experts onto the Dempster/Shafer theory of
evidence space. This map fails to be an isomorphism (which would imply
equivalence of the spaces) only insofar as it is many-to-one. That is, for each state

£ in the theory of evidence, there is a collection of elements in the space of opinions
of experts which all map to the single state. In this way the state in the theory of
evidence represents the corresponding collection of elements. In fact, what this col-
lection of elements have in common is that the statistics of the opinions of the
experts defined by the element are similar, in terms of the way statistics are mecas-
ured by the map U.

Furthermore, combination in the space of opinions of experts, as defined in
Section 3, leads to combination in the theory of evidence space. This allows us to

",* implement combination in a somewhat simpler manner, since the formulas for com-
bination without the normalization are simpler than the more standard formulas,
and also permits us to view combination in the theory of evidence space as the
tracking of statistics of opinions of experts as they combine information in a pair-
wise Bayesian fashion over the product space of experts. Applying a Bayesian
interpretation to the updating of the opinions of experts also makes clear the implicit
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independence assumptions which must exist in order to combine evidence in the
prescribed manner.

From this viewpoint, we can see how the Dempster/Shafer theory of evidence
accomplishes its goals. Degrees of support for a proposition, belief, and plausibili-
ties, are all measured in terms of joints and disjunctive probabilities over a set of
experts who are naming possible labels given current information. The problem of
ambiguous knowledge versus uncertain knowledge, which is frequently described in
terms of "withholding belief," can be viewed as two different distributions of opin-
ions. In particular, ambiguous knowledge can be seen as observing high densities of
opinions on particular disjoint subsets, whereas uncertain knowledge corresponds to
unanimity of opinions, where the agreed upon opinion gives many possibilities.
Finally, instead of performing Bayesian updating, a set of values are updated in a
Bayesian fashion over the product space, which results in non-Bayesian formulas
over the space of labels.In meeting each of these goals, the theory of evidence invokes compromises

that we might wish to change. For example, in order to track statistics, it is neces-
sary to model the distribution of opinions. If these opinions are probabilistic assign-
ments over the set of labels, then the distribution function will be too complicated to
retain precisely. The Dempster/Shafer theory of evidence solves this problem by
simplifying the opinions to boolean decisions, so that each expert's opinion lies in a
space having 2" elements. In this way, the full set of statistics can be specified using
2' values. We have suggested an alternate method, which retains the probability
values in the opinions without converting them into boolean decisions, and requires
only O(n 2 ) values to model the distribution, but fails to retain full information
about the distribution. Instead, our method attempts to approximate the distribution
of opinions with a Gaussian function.
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